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A detailed theory of two-step electron transport through localized states is worked out.
The quantitative results obtained are found to agree with existing experimental data. Analogies
to the Anderson model of localized moments are discussed.

The general problem we are dealing with can be
stated as follows. Let three different systems be
given, say, A, B, and P, each of them having sev-
eral electron states. There is an interaction be-
tween electrons on A and P, and on B and P. We
are interested in electron transport between A and
B due to the above indirect coupling through P.

Recently Giaever and Zeller''? (GZ) have inves-
tigated such a problem in studying tunnel junctions
containing small metallic particles inside the bar-
rier. They suggested that in general there are
two basic kinds of electron transition processes
between A and B:

(i) Two-step transitions, when the electron first
goes from, say, A to P, being localized there, and
thereafter makes a subsequent transition from P
to B. This type of process we will call transitions
via real intermediate states.

(ii) Transitions via virtual intermediate states
on P as given by higher-order perturbation theory.
GZ pointed out that process (i) may explain the
experimentally observed anomalous, strongly non-
Ohmic conductance behavior, because the charging
up of P by the temporary localization of the electron
needs an activation energy. Their treatment, how-
ever, fails to give a detailed microscopic mechan-
ism and thus is not able to predict quantitative re-
lations such as those between line shapes and tem-

perature dependence.

In this paper we attempt to give a more rigorous
and quantitative theory. Following GZ we will
focus our attention on the Coulomb energies of lo-
calized electrons. We will apply, however, a
self-consistent approach analogous to the Anderson®
model of local moments. We feel that the original
picture of activation energies is not very precise
and not suitable for a microscopic treatment.

In our model we assume that the over-all relaxa-
tion time of single particle states on P is short
compared to the electron transition rates between
P and A or B. This has the consequence that sub-
sequent transitions have no phase coherence, and
occur as the separate quantum transitions of process
(i). This situation can be formulated by using
statistical mechanical transport theory in terms of
localized electron states on either A, B, or P.
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For temperatures above 1 °K it is reasonable to
assume also that the coupling to lattice vibrations
is strong enough to keep the electron system on P
at the temperature of the surrounding heat bath,*
since the transition rates in relevant tunneling ex-
‘periments are as small as 10° sec™ per particle.

The Hamiltonian under these assumptions may be
given as

H=H,+Hg+Hp+Hp+Hpgp . 1)

H; describes free electron states in C, where in
what follows C stands for A or B, and H;p can be
taken in the simplest approximation as

HCP= E Vkm(c:‘dm+d1: Ch) ’
kym

where ¢, and d,, are one-electron destruction op-
erators to the states 2 in C and m in P, respective~
ly. (& and m stand for all the quantum numbers.)
In particular, this form of H;p is just the tunneling
Hamiltonian approach,® which seems to be well
justified in this case, since no interface effects of
interest are involved. ¢

Hp deserves a little more attention. We take it

to be
HP= Z €md:dm"" % Z Umm' dr:dmdr:'dm’ ’ (2)
m m,m’

m#m’
resembling the Anderson Hamiltonian.® Hp has to
be considered as an effective Hamiltonian contain-
ing dressed quantities, especially since the matrix
elements of the static Coulomb interaction U,
contain all external screening (polarization of the
neighborhood, image forces”) and internal screening
effects. In the limiting case of P being a single
atom, U, corresponds to the intra-atomic Cou- -
lomb interaction of the Anderson model, while for
metallic particles much larger than the Thomas-
Fermi screening radius it approaches ¢*/Cp, where
e is the electronic charge and Cj is the capacitance
of the particle in the given neighborhood.? Since,
in fact, we are concerned with eigenstates of (2)
differing only in a few of the occupation numbers
7,, we may replace U,,. by a constant U, and for
later convenience we write €, as ¢/, + V,, where
V,-is the electrostatic potential due to the back-
ground distribution of ions and frozen in dipoles
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in and near P. Thus we are given the spectrum of
(2) as

EWN, %)= Dum €nttm+ VoN+ SUN(N=1) ,

where n,=0or 1, and 3, n,=N.

We adopt usual quasiequilibrium statistical me-
chanics of transport phenomena. Thus all of A, B,
and P will be described by equilibrium density
matrices corresponding to the temperature 7 and
to the local electrochemical potentials u,, g, and
Lp, respectively. The density matrix for P is
given this way as

Pp= ZN Pypy,

where py is the canonical density matrix for the
N electron system with free-electron energies ¢;,.
For convenience we make the assumption, appli-
cable to the experimental situation in GZ’s work,
that the average spacing of the energy levels is
much less than 27. Thus p, corresponds® to the
usual Fermi distribution with an internal Fermi
energy €, which can be taken as a constant over
the small range of N’s we are concerned with.
Thus Py is given as (8=1/k7):

P exp{- Bles N+ V,N+ 3 UNN - 1) - upNl}
N Yvexp{- Bles N+ VuN+ SUN(N-1) - upN]}

In calculating electron transition rates, we de-
termine the single-electron energies in a self-con-
sistent manner. If P is in a state with N electrons
on it, an additional electron coming to the state m
will sense the average field of the N electrons on
P, i.e., its final energy will be

€f (N)= €, +Vo+NU.

Similarly, an electron leaving the state m will have
an initial energy corresponding to the average field
of the other N -1 electrons on P:

(N =en+ Vo+ N=1)U .

In other words €7, (N) is found to be the energy gain
of the electron gas on P if an electron is added,
and €} (N) the energy loss if an electron is sub-
tracted. It is just the difference between ¢/, ()
and €! (V) which gives rise to the anomalous con-
ductive behavior in question. This can be visual-
ized in a simplified manner as follows. At very
low temperatures, transition to the state m is pos-
sible only from the filled states below u., that is
only for uc>€f (V). Similarly, transition from
the state m to C can occur only for g < efn .
Thus there is no transition possible in between.
Since such a situation holds for all N’s and m’s, we
expect a strong reduction of the total, averaged
current in the region, where the average direction
of the individual transitions is reversed. This
region is centered at zero bias, of course.

Now we may solve our transport problem for

|

given environmental parameters u,, pg, and T.
We express directly the partial current between P
and C in the first Born approximation as

Icp=We 2y Py [{FfE- o)1 -fE-€x-V,

~NU)] =[1-f(E- uc)llE-€n~ Vo= NU+U)} dE ,
with
flx)= (" + 1),

Here W, is proportional to an appropriate average
of V,,,’s and to the electron density of states on P
and C taken to be energy independent. We have to
fulfill the charge-conservation requirement

Ipp+ Ipp=0 (3)

by the proper choice of up, the only variable param-
eter. The particular value of I, satisfying Eq.

-(8) is the net transported current I* from A to B.

It may be noted that I* depends on the parameters
U, T, Vo+€p— s, Wy, Wy, and u, — pg=eV, where
V is the voltage difference between A and B.

What remains is the choice of V,. GZhavepointed
out that because of frozen-in polarization effects
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FIG. 1. Calculated conductance-vs-voltage characteris-
tics for several values of the normalized temperature
ET/U and the asymmetry parameter A. For comparison
two of the experimental characteristics taken from Fig.

3 of Ref. 2 are also shown normalized with U=2.7 meV
(dashed lines).
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FIG. 2. The dependence of the calculated conductance-
vs-voltage characteristics on the asymmetry parameter
A at a given temperature.

in the surroundings of P, V, is distributed con-
tinuously rather than having only discrete values
corresponding to integer numbers of ionic charges.
Making use of the fact that I* is a periodic function
of V, with a period of U, I* can be easily averaged
over the smooth distribution of V|, by integrating
over a full period. The obtained averaged net
current I(V, U, T, W4, Wp) is our final result.

The outlined calculations have been performed
numerically, and the results are represented in
Figs. 1 and 2 as the normalized conductance
G(V)/G(=) vs voltage characteristics, where G(V)
=8I(V)/aV and G(«) is the limiting value of G(V)
for high voltages, which is independent of V and 7'.
The asymmetry parameter X is defined as W, /Wy
if W,/Wg>1 and Wy/W, otherwise. Note the re-
markable difference between the characteristics
with A= and A=10.

In particular our results imply that for 27 <0. 2U,

G(0)/G()~2.47kT/U (4)

independently of A. The linear dependence of the
zero-bias conductance on the temperature for low
T’s has been already pointed out by GZ; the pro-
portionality constant, however, could not be cal-
culated by their treatment. Eq. (4) is a rather
important statement relating the temperature de-
pendence to the width of the conductance anomaly,
which is not very strongly affected by the a priovi
unknown A, (Howe\)er, for the sample fabrication
procedure applied by GZ one would expect A=10 to
be in the correct order.) This yields an immediate
comparison between theory and experiment. We
have performed this for the experimental curves
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taken from Fig. 3 of Ref. 2 by GZ. From the
observed temperature dependence of G(0), we have
obtained an averaged value U= 2.7 meV from Eq.
(4), a value which was used to represent two of the
experimental characteristics in our Fig. 1. [Since
the last data point was at V=5 mV, we have actually
extrapolated G(«) to be 15% greater than G(5 mV)
with the help of our calculated curves using an
estimated U.] The good agreement obtained by
this one-parameter fit seems to be convincing. A
more detailed comparison with more experiments
is beyond the scope of the present paper.

We may mention that our quasiequilibrium ap-
proach to determine Py’s is, in principle, justified
for voltages below 27 only. A somewhat closer
inspection shows, however, that our procedure
approximates the more rigorous result obtainable
by the solution of the kinetic equations reasonably
well almost in the entire region of V, T, and A
investigated; deviations beyond a few percent are
likely only for A=1if V>U.

Finally we comment on the analogy of our model
and the Anderson model. As Denton, Miihlschlegel,
and Scalapino® have pointed out recently, free
metallic particles with an odd number of elec-
trons show a Curie-type magnetic behavior at low
temperatures, if the spin-orbital coupling is not
too strong. This obviously holds for particles be-
tween two metals also if the mixing terms V,, are
negligible. However, upon reducing the isolation
between the particle and one of the electrodes, the
mixing terms may become quite important on the
energy scale of the average level spacing and U,
which will be for particles of about 10-A diameter
of the order of 5 and 100 meV, respectively. Such
particles may well serve as the magnetic “im-
purities” discussed by Anderson’ in the derivation
of Appelbaum’s Hamiltonian!® for magnetic tunnel-
ing. According to this, the Schrieffer-Wolff trans-
formation may apply, and the magnetic behavior
of the particles may correspond to the s-d model.
Thus such particles may cause both the present
type and the Appelbaum-type tunneling anomalies,
in accordance with the experimental fact that their
appearance is correlated. The consequent pos-
sibility that small metallic particles semi-isolated
from a bulk metal may show Kondo-type magnetic
behavior, might deserve some attention as well.
These problems will be discussed elsewhere.

The author is indebted to I. Giaever and H. R.
Zeller for stimulating discussions and remarks
in the early stage of this work, and also to L. L.
Hirst for helpful discussions.
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